[Udemy] Машинное обучение: регрессия и предсказание данных на Python (2020)

75,00 

Мы рассмотрим все практические аспекты применения линейной регрессии для предсказания числовых показателей энергопотребления ASHRAE в соревновании на Kaggle вплоть до формирования конечного результата.

Добавить в список желанийlist
Добавить в список желанийlist
Категория:

Описание

Чему вы научитесь

  • Процесс ETL: загрузка, очистка, объединение данных
  • Построение и оценка качества модели линейной регрессии
  • EDA: исследовательский анализ данных
  • Обогащение данных для извлечение смысла
  • Оптимизация потребления памяти набором данных
  • Иерархия моделей линейной регрессии
  • Ансамбль моделей линейной регрессии
  • Экспорт и импорт данных в CSV и HDF5
  • Участие в соревнование Kaggle

Требования

  • Продвинутый Python
  • Основы математической статистики

Описание
Мы рассмотрим все практические аспекты применения линейной регрессии для предсказания числовых показателей энергопотребления ASHRAE в соревновании на Kaggle вплоть до формирования конечного результата.

В этом курсе:

  • Особенности процесса анализа данных (ETL): загрузка, очистка, объединение наборов данных с pandas.
  • Проведение исследовательского анализа данных для поиска зависимостей: EDA.
  • Использование sklearn для линейной регрессии.
  • Интерполяция и экстраполяция данных.
  • Расчет метрики качества RMSLE для моделей линейной регрессии.
  • Оптимизация линейной регрессии: выбор наилучших параметров и гиперпараметров.
  • Оптимизация потребления памяти при работе с большими данными.
  • Запасные модели линейной регрессии.
  • Ансамбли линейной регрессии для уточнения предсказания.
  • Экспорт и импорт данных, включая промежуточные.
  • Выгрузка результата для соревнования на Kaggle.

Для кого этот курс:

  • Аналитики Python, изучающие машинное обучение
  • Программисты больших данных
  • Исследователи больших данных

 

Отзывы

Отзывов пока нет.

Будьте первым, кто оставил отзыв на “[Udemy] Машинное обучение: регрессия и предсказание данных на Python (2020)”

Ваш адрес email не будет опубликован. Обязательные поля помечены *